Dynamic Structure of Neural Variability in the Cortical Representation of Speech Sounds.
نویسندگان
چکیده
UNLABELLED Accurate sensory discrimination is commonly believed to require precise representations in the nervous system; however, neural stimulus responses can be highly variable, even to identical stimuli. Recent studies suggest that cortical response variability decreases during stimulus processing, but the implications of such effects on stimulus discrimination are unclear. To address this, we examined electrocorticographic cortical field potential recordings from the human nonprimary auditory cortex (superior temporal gyrus) while subjects listened to speech syllables. Compared with a prestimulus baseline, activation variability decreased upon stimulus onset, similar to findings from microelectrode recordings in animal studies. We found that this decrease was simultaneous with encoding and spatially specific for those electrodes that most strongly discriminated speech sounds. We also found that variability was predominantly reduced in a correlated subspace across electrodes. We then compared signal and variability (noise) correlations and found that noise correlations reduce more for electrodes with strong signal correlations. Furthermore, we found that this decrease in variability is strongest in the high gamma band, which correlates with firing rate response. Together, these findings indicate that the structure of single-trial response variability is shaped to enhance discriminability despite non-stimulus-related noise. SIGNIFICANCE STATEMENT Cortical responses can be highly variable to auditory speech sounds. Despite this, sensory perception can be remarkably stable. Here, we recorded from the human superior temporal gyrus, a high-order auditory cortex, and studied the changes in the cortical representation of speech stimuli across multiple repetitions. We found that neural variability is reduced upon stimulus onset across electrodes that encode speech sounds.
منابع مشابه
Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملAuditory pathway encoding and neural plasticity in children with learning problems.
An inability to process auditory information, especially speech, characterizes many children with learning and attention problems. Our working hypothesis is that these speech-sound perception problems arise, at least in some cases, from faulty representation of the speech signal in central auditory centers. Preconscious neurophysiologic representation of sound structure by central auditory path...
متن کاملSpeech Sound Processing Deficits and Training-Induced Neural Plasticity in Rats with Dyslexia Gene Knockdown
In utero RNAi of the dyslexia-associated gene Kiaa0319 in rats (KIA-) degrades cortical responses to speech sounds and increases trial-by-trial variability in onset latency. We tested the hypothesis that KIA- rats would be impaired at speech sound discrimination. KIA- rats needed twice as much training in quiet conditions to perform at control levels and remained impaired at several speech task...
متن کاملNeural representation of amplified speech sounds.
OBJECTIVE To determine if (1) evoked potentials elicited by amplified speech sounds (/si/ and /[symbol: see text]/) can be recorded reliably in individuals, (2) amplification alters neural response patterns, and (3) different amplified speech sounds evoke different neural patterns. DESIGN Cortical evoked potentials were recorded in sound field from seven normal-hearing young adults in respons...
متن کاملThe auditory representation of speech sounds in human motor cortex
In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 36 28 شماره
صفحات -
تاریخ انتشار 2016